Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 884909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574487

RESUMO

Daily and annually cycling conditions manifested on the Earth have forced organisms to develop time-measuring devices. Circadian clocks are responsible for adjusting physiology to the daily cycles in the environment, while the anticipation of seasonal changes is governed by the photoperiodic clock. Circadian clocks are cell-autonomous and depend on the transcriptional/translational feedback loops of the conserved clock genes. The synchronization among clock centers in the brain is achieved by the modulatory function of the clock-dependent neuropeptides. In insects, the most prominent clock neuropeptide is Pigment Dispersing Factor (PDF). Photoperiodic clock measures and computes the day and/or night length and adjusts physiology accordingly to the upcoming season. The exact mechanism of the photoperiodic clock and its direct signaling molecules are unknown but, in many insects, circadian clock genes are involved in the seasonal responses. While in Drosophila, PDF signaling participates both in the circadian clock output and in diapause regulation, the weak photoperiodic response curve of D. melanogaster is a major limitation in revealing the full role of PDF in the photoperiodic clock. Here we provide the first description of PDF in the linden bug, Pyrrhocoris apterus, an organism with a robust photoperiodic response. We characterize in detail the circadian and photoperiodic phenotype of several CRISPR/Cas9-generated pdf mutants, including three null mutants and two mutants with modified PDF. Our results show that PDF acts downstream of CRY and plays a key role as a circadian clock output. Surprisingly, in contrast to the diurnal activity of wild-type bugs, pdf null mutants show predominantly nocturnal activity, which is caused by the clock-independent direct response to the light/dark switch. Moreover, we show that together with CRY, PDF is involved in the photoperiod-dependent diapause induction, however, its lack does not disrupt the photoperiodic response completely, suggesting the presence of additional clock-regulated factors. Taken together our data provide new insight into the role of PDF in the insect's circadian and photoperiodic systems.

2.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893879

RESUMO

Most organisms possess time-keeping devices called circadian clocks. At the molecular level, circadian clocks consist of transcription-translation feedback loops (TTFLs). Although some components of the negative TTFL are conserved across the animals, important differences exist between typical models, such as mouse and the fruit fly. In Drosophila, the key components are PERIOD (PER) and TIMELESS (TIM-d) proteins, whereas the mammalian clock relies on PER and CRYPTOCHROME (CRY-m). Importantly, how the clock has maintained functionality during evolutionary transitions between different states remains elusive. Therefore, we systematically described the circadian clock gene setup in major bilaterian lineages and identified marked lineage-specific differences in their clock constitution. Then we performed a thorough functional analysis of the linden bug Pyrrhocoris apterus, an insect species comprising features characteristic of both the Drosophila and the mammalian clocks. Unexpectedly, the knockout of timeless-d, a gene essential for the clock ticking in Drosophila, did not compromise rhythmicity in P. apterus, it only accelerated its pace. Furthermore, silencing timeless-m, the ancestral timeless type ubiquitously present across animals, resulted in a mild gradual loss of rhythmicity, supporting its possible participation in the linden bug clock, which is consistent with timeless-m role suggested by research on mammalian models. The dispensability of timeless-d in P. apterus allows drawing a scenario in which the clock has remained functional at each step of transition from an ancestral state to the TIM-d-independent PER + CRY-m system operating in extant vertebrates, including humans.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Mamíferos/metabolismo , Camundongos
3.
Insect Biochem Mol Biol ; 122: 103376, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339620

RESUMO

EFLamide (EFLa) is a neuropeptide known for a long time from crustaceans, chelicerates and myriapods. Recently, EFLa-encoding genes were identified in the genomes of apterygote hexapods including basal insect species. In pterygote insects, however, evidence of EFLa was limited to partial sequences in the bed bug (Cimex), migratory locust and a few phasmid species. Here we present identification of a full length EFLa-encoding transcript in the linden bug, Pyrrhocoris apterus (Heteroptera). We created complete null mutants allowing unambiguous anatomical location of this peptide in the central nervous system. Only 2-3 EFLa-expressing cells are located very close to each other near to the surface of the lateral protocerebrum with dense neuronal arborization. Homozygous null EFLa mutants are fully viable and do not have any visible defect in development, reproduction, lifespan, diapause induction or circadian rhythmicity. Phylogenetic analysis revealed that EFLa-encoding transcripts are produced by alternative splicing of a gene that also produces Prohormone-4. However, this Proh-4/EFLa connection is found only in Hemiptera and Locusta, whereas EFLa-encoding transcripts in apterygote hexapods, chelicerates and crustaceans are clearly distinct from Proh-4 genes. The exact mechanism leading to the fused Proh-4/EFLa transcript is not yet determined, and might be a result of canonical cis-splicing, cis-splicing of adjacent genes (cis-SAG), or trans-splicing.


Assuntos
Heterópteros/genética , Proteínas de Insetos/genética , Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Feminino , Heterópteros/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Filogenia , Alinhamento de Sequência , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
4.
Front Physiol ; 11: 242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300305

RESUMO

Circadian clocks are synchronized with the external environment by light and temperature. The effect of these cues on behavior is well-characterized in Drosophila, however, little is known about synchronization in non-model insect species. Therefore, we explored entrainment of locomotor activity by light and temperature in the linden bug Pyrrhocoris apterus (Heteroptera), an insect species with a strong seasonal response (reproductive diapause), which is triggered by both photoperiod and thermoperiod. Our results show that either light or temperature cycles are strong factors entraining P. apterus locomotor activity. Pyrrhocoris is able to be partially synchronized by cycles with temperature amplitude as small as 3°C and more than 50% of bugs is synchronized by 5°C steps. If conflicting zeitgebers are provided, light is the stronger signal. Linden bugs lack light-sensitive (Drosophila-like) cryptochrome. Notably, a high percentage of bugs is rhythmic even in constant light (LL) at intensity ∼400 lux, a condition which induces 100% arrhythmicity in Drosophila. However, the rhythmicity of bugs is still reduced in LL conditions, whereas rhythmicity remains unaffected in constant dark (DD). Interestingly, a similar phenomenon is observed after temperature cycles entrainment. Bugs released to constant thermophase and DD display weak rhythmicity, whereas strong rhythmicity is observed in bugs released to constant cryophase and DD. Our study describes the daily and circadian behavior of the linden bug as a response to photoperiodic and thermoperiodic entraining cues. Although the molecular mechanism of the circadian clock entrainment in the linden bug is virtually unknown, our study contributes to the knowledge of the insect circadian clock features beyond Drosophila research.

5.
Front Physiol ; 10: 891, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379599

RESUMO

The CRISPR/Cas9 technique is widely used in experimentation with human cell lines as well as with other model systems, such as mice Mus musculus, zebrafish Danio reiro, and the fruit fly Drosophila melanogaster. However, publications describing the use of CRISPR/Cas9 for genome editing in non-model organisms, including non-model insects, are scarce. The introduction of this relatively new method presents many problems even for experienced researchers, especially with the lack of procedures to tackle issues concerning the efficiency of mutant generation. Here we present a protocol for efficient genome editing in the non-model insect species Pyrrhocoris apterus. We collected data from several independent trials that targeted several genes using the CRISPR/Cas9 system and determined that several crucial optimization steps led to a remarkably increased efficiency of mutant production. The main steps are as follows: the timing of embryo injection, the use of the heteroduplex mobility assay as a screening method, in vivo testing of sgRNA efficiency, and G0 germline mosaicism screening. The timing and the method of egg injections used here need to be optimized for other species, but other here-described optimization solutions can be applied immediately for genome editing in other insect species.

6.
J Insect Physiol ; 101: 113-122, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28733238

RESUMO

Circadian clocks orchestrate many physiological processes in adult organisms. For example, rhythmic feeding behavior is regulated by the central clock in the nervous system in coordination with metabolic rhythms, which in turn depend mostly on peripheral clocks localized in many tissues. Disruption of the circadian clock leads to metabolic dysregulation both in mammals and in the model insect Drosophila melanogaster. Circadian coordination of feeding and metabolism has been studied mainly in adult insects and not in larval stages, which are dramatically different from adults in species with complete full metamorphosis. The goal of this study was to determine whether feeding and metabolism in lepidopteran larvae are subject to circadian regulation. We show that cotton leafworm caterpillars, Spodoptera littoralis, display rhythmic feeding behavior and that circadian clock genes are expressed in two peripheral tissues, the midgut and fat body. Even though both tissues display rhythmic circadian clock gene expression, the main component of the clock, per, is arrhythmic in the gut and rhythmic in the fat body. In both tissues, the presence of rhythmic physiological processes was observed, which suggested that metabolism is already driven by the circadian clock in the insect's juvenile stages.


Assuntos
Ritmo Circadiano , Spodoptera/fisiologia , Animais , Corpo Adiposo/metabolismo , Comportamento Alimentar , Trato Gastrointestinal/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Especificidade de Órgãos , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento
7.
J Biol Rhythms ; 31(6): 568-576, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27708112

RESUMO

Circadian clocks keep organisms in synchrony with external day-night cycles. The free running period (FRP) of the clock, however, is usually only close to-not exactly-24 h. Here, we explored the geographical variation in the FRP of the linden bug, Pyrrhocoris apterus, in 59 field-lines originating from a wide variety of localities representing geographically different environments. We have identified a remarkable range in the FRPs between field-lines, with the fastest clock at ~21 h and the slowest close to 28 h, a range comparable to the collections of clock mutants in model organisms. Similarly, field-lines differed in the percentage of rhythmic individuals, with a minimum of 13.8% and a maximum of 86.8%. Although the FRP correlates with the latitude and perhaps with the altitude of the locality, the actual function of this FRP diversity is currently unclear. With the recent technological progress of massive parallel sequencing and genome editing, we can expect remarkable progress in elucidating the genetic basis of similar geographic variants in P. apterus or in similar emerging model species of chronobiology.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Heterópteros/fisiologia , Atividade Motora/fisiologia , Tilia/parasitologia , Animais , Europa (Continente) , Europa Oriental , Feminino , Geografia , Heterópteros/classificação , Heterópteros/genética , Israel , Masculino , Filogenia , Fatores de Tempo
8.
J Exp Zool A Ecol Genet Physiol ; 325(4): 233-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27170555

RESUMO

The timekeeping mechanisms that operate at the core of circadian clocks (oscillators) are based on interacting molecular feedback loops consisting of clock and clock-associated genes. However, there is a lack of comprehensive studies on the expression of clock genes (particularly those forming its core) in single crustacean species at the mRNA and protein levels, and these studies could serve as a basis for constructing a model of the crustacean molecular oscillator. Studies on Daphnia pulex are well suited to fill this gap because this species is the only representative crustacean whose genome has been sequenced. We analyzed the abundance of 20 gene transcripts throughout the day in the whole bodies of D. pulex (single clone); we found that 15 of these genes were transcriptionally active, and most had daily expression level changes. According to the functional classification of their homologues in insects, these genes may represent elements of the Daphnia molecular oscillator core and its input and output pathways. Studies of PERIOD (PER) protein, one of the main clock components, revealed its rhythmic expression pattern in the epidermis, gut, and ovaries. Finally, the cycling levels of many of these clock components observed in animals reared in continuous light led to the conclusion that the Daphnia oscillator, even if it is structurally similar to the oscillators of other arthropods, can be considered a particularly important adaptive mechanism for living in environments with extreme photoperiods.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Daphnia/metabolismo , Regulação da Expressão Gênica , Animais , Proteínas de Artrópodes/genética , Ritmo Circadiano , Daphnia/genética , Daphnia/fisiologia , Feminino , Fotoperíodo
9.
Front Genet ; 6: 83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806044

RESUMO

Circadian coordination of metabolism, physiology, and neural functions contributes to healthy aging and disease prevention. Clock genes govern the daily rhythmic expression of target genes whose activities underlie such broad physiological parameters as maintenance of redox homeostasis. Previously, we reported that glutathione (GSH) biosynthesis is controlled by the circadian system via effects of the clock genes on expression of the catalytic (Gclc) and modulatory (Gclm) subunits comprising the glutamate cysteine ligase (GCL) holoenzyme. The objective of this study was to determine whether and how aging, which leads to weakened circadian oscillations, affects the daily profiles of redox-active biomolecules. We found that fly aging is associated with altered profiles of Gclc and Gclm expression at both the mRNA and protein levels. Analysis of free aminothiols and GCL activity revealed that aging abolishes daily oscillations in GSH levels and alters the activity of glutathione biosynthetic pathways. Unlike GSH, its precursors and products of catabolism, methionine, cysteine and cysteinyl-glycine, were not rhythmic in young or old flies, while rhythms of the glutathione oxidation product, GSSG, were detectable. We conclude that the temporal regulation of GSH biosynthesis is altered in the aging organism and that age-related loss of circadian modulation of pathways involved in glutathione production is likely to impair temporal redox homeostasis.

10.
Neurobiol Dis ; 77: 117-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25766673

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by severe cognitive deterioration. While causes of AD pathology are debated, a large body of evidence suggests that increased cleavage of Amyloid Precursor Protein (APP) producing the neurotoxic Amyloid-ß (Aß) peptide plays a fundamental role in AD pathogenesis. One of the detrimental behavioral symptoms commonly associated with AD is the fragmentation of sleep-activity cycles with increased nighttime activity and daytime naps in humans. Sleep-activity cycles, as well as physiological and cellular rhythms, which may be important for neuronal homeostasis, are generated by a molecular system known as the circadian clock. Links between AD and the circadian system are increasingly evident but not well understood. Here we examined whether genetic manipulations of APP-like (APPL) protein cleavage in Drosophila melanogaster affect rest-activity rhythms and core circadian clock function in this model organism. We show that the increased ß-cleavage of endogenous APPL by the ß-secretase (dBACE) severely disrupts circadian behavior and leads to reduced expression of clock protein PER in central clock neurons of aging flies. Our data suggest that behavioral rhythm disruption is not a product of APPL-derived Aß production but rather may be caused by a mechanism common to both α and ß-cleavage pathways. Specifically, we show that increased production of the endogenous Drosophila Amyloid Intracellular Domain (dAICD) caused disruption of circadian rest-activity rhythms, while flies overexpressing endogenous APPL maintained stronger circadian rhythms during aging. In summary, our study offers a novel entry point toward understanding the mechanism of circadian rhythm disruption in Alzheimer's disease.


Assuntos
Envelhecimento , Precursor de Proteína beta-Amiloide/metabolismo , Relógios Circadianos/genética , Regulação da Expressão Gênica/genética , Fatores Etários , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/citologia , Desintegrinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Análise de Fourier , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Longevidade , Metaloendopeptidases/metabolismo , Atividade Motora/genética , Neurônios/metabolismo , Proteínas Circadianas Period/metabolismo
11.
PLoS One ; 9(8): e106068, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171136

RESUMO

Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer's disease (AD), are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-ß (Aß) peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aß peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01). No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aß peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aß peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aß peptides causes rhythm degradation downstream from the central clock mechanism.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Envelhecimento/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Imuno-Histoquímica , Longevidade/genética , Longevidade/fisiologia , Masculino , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética
12.
Insect Biochem Mol Biol ; 47: 23-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556521

RESUMO

In insects, spermatozoa develop in the testes as clones of single spermatogonia covered by specialized somatic cyst cells (cc). Upon completion of spermatogenesis, spermatozoa are released to the vas deferens, while the cc remain in the testes and die. In the fruit fly Drosophila melanogaster, the released spermatozoa first reach the seminal vesicles (SV), the organ where post-testicular maturation begins. Here, we demonstrate the temporal (restricted to the evening and early night hours) accumulation of membranous vesicles containing proteins in the SV lumen of D. melanogaster. When SV vesicles were isolated from the semen and co-incubated with testis-derived spermatozoa in vitro, their contents bound to the spermatozoa along their tails. The proteins of the SV vesicles were then characterized using 2-D electrophoresis. We identified a prominent protein spot of around 45-47 kDa, which disappears from the SV vesicles in the night, i.e. shortly after they appear in the SV lumen. Sequencing of peptides derived from this spot by mass spectrometry revealed identity with three yolk proteins (YP1-3). This unexpected result was confirmed by western blotting, which demonstrated that SV vesicles contain proteins that are immunoreactive with an antibody against D. melanogaster YP1-3. The expression of all yp genes was shown to be a unique feature of testis tissues. Using RNA probes we found that their transcripts localize exclusively to the cc that cover fully developed spermatozoa in the distal part of each testis. Temporally, the expression of yp genes was found to be restricted to a short period during the day and is followed by the evening accumulation of YP proteins in the cc. Immunohistochemical staining confirmed that cc are the source of SV vesicles containing YPs that are released into the SV lumen. These vesicles interact with spermatozoa and as a result, YPs become extrinsic proteins of the sperm membrane. Thus, we describe for the first time the expression of yolk proteins in the male reproductive system of D. melanogaster under physiological conditions, and show that somatic cells of the testes are the source of these proteins.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Ovo/metabolismo , Regulação da Expressão Gênica , Vitelogeninas/metabolismo , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas do Ovo/química , Proteínas do Ovo/genética , Eletroforese em Gel Bidimensional , Feminino , Masculino , Glândulas Seminais/química , Glândulas Seminais/metabolismo , Espermatogênese , Espermatozoides/química , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Testículo/química , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Vitelogeninas/química , Vitelogeninas/genética
13.
Insect Biochem Mol Biol ; 43(6): 522-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499932

RESUMO

Circadian clocks (oscillators) regulate multiple aspects of insect behaviour and physiology. The circadian system located in the male reproductive tract of Lepidoptera orchestrates rhythmic sperm release from testis and sperm maturation in the upper vas deferens (UVD). Our previous research on the cotton leafworm, Spodoptera littoralis, suggested rhythmic changes in the V-ATPase levels in the UVD epithelium, which correlated with rhythmic pH fluctuations in the UVD lumen. However, it was not known whether UVD cells contain clock mechanism that generates these daily fluctuations. In the current paper, we show circadian rhythm in the expression of clock gene period at the mRNA and protein level in the UVD epithelium. To determine the role of PER in V-ATPase and pH regulation, testes-UVD complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment, which transiently lowered per mRNA and protein in the UVD, altered expression of V-ATPase c subunit. In addition, per RNAi caused a significant delay in the UVD lumen acidification. These data demonstrate that the UVD molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic V-ATPase activity and periodic acidification of the UVD lumen.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/genética , Spodoptera/crescimento & desenvolvimento , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Comportamento Animal , Proteínas CLOCK/fisiologia , Epitélio/enzimologia , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Masculino , Interferência de RNA , Reprodução/genética , Espermatozoides/metabolismo , Spodoptera/genética , Testículo/metabolismo
14.
PLoS One ; 7(11): e50454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226288

RESUMO

Circadian clocks generate daily rhythms in neuronal, physiological, and metabolic functions. Previous studies in mammals reported daily fluctuations in levels of the major endogenous antioxidant, glutathione (GSH), but the molecular mechanisms that govern such fluctuations remained unknown. To address this question, we used the model species Drosophila, which has a rich arsenal of genetic tools. Previously, we showed that loss of the circadian clock increased oxidative damage and caused neurodegenerative changes in the brain, while enhanced GSH production in neuronal tissue conferred beneficial effects on fly survivorship under normal and stress conditions. In the current study we report that the GSH concentrations in fly heads fluctuate in a circadian clock-dependent manner. We further demonstrate a rhythm in activity of glutamate cysteine ligase (GCL), the rate-limiting enzyme in glutathione biosynthesis. Significant rhythms were also observed for mRNA levels of genes encoding the catalytic (Gclc) and modulatory (Gclm) subunits comprising the GCL holoenzyme. Furthermore, we found that the expression of a glutathione S-transferase, GstD1, which utilizes GSH in cellular detoxification, significantly fluctuated during the circadian day. To directly address the role of the clock in regulating GSH-related rhythms, the expression levels of the GCL subunits and GstD1, as well as GCL activity and GSH production were evaluated in flies with a null mutation in the clock genes cycle and period. The rhythms observed in control flies were not evident in the clock mutants, thus linking glutathione production and utilization to the circadian system. Together, these data suggest that the circadian system modulates pathways involved in production and utilization of glutathione.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Glutamato-Cisteína Ligase/genética , Glutationa Transferase/genética , Glutationa/biossíntese , Subunidades Proteicas/genética , Animais , Química Encefálica , Relógios Circadianos/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/metabolismo , Glutationa/genética , Glutationa Transferase/metabolismo , Masculino , Mutação , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...